
High-frequency motors: Energy efficiency through intelligent winding design
In order to improve efficiency in the overall system of high-frequency motors, we’ve created a simulation model to specifically address winding losses. Winding losses generally have significant impact on the efficiency of the motor, particularly in high-frequency systems. Winding losses can be categorized into a direct current component (DC) and an alternating current component (AC).
In order to design reliable systems with high efficiency, the accurate prediction of winding losses is more important than ever - from a sustainability perspective as well.

In co-creation with experts from Newcastle University, the CONNACTIVE team has developed a simulation model to correctly classify winding losses in the overall system.
Classifying winding losses correctly
Cause and effect
Winding losses lead to DC losses and AC losses.
There are three sources of loss:
-
DC-losses occur as a result of direct current resistance
-
AC-losses occur as a result of skin and proximity effects und particularly through induced fields emanating from the rotor.

Modelling Winding Losses
Our Approach:
-
Comparison of different winding solutions
-
Development and refinement of a simulation methodology to determine winding losses
-
Analysis of the results
Implementation
We looked at different winding configurations of profile copper and compared them with Litz-wire-based windings.
Evaluation / Conclusion
-
The DC losses of the Litz-wires are no more than 10 % higher than in the other two options.
-
AC losses increase at higher frequencies: Operating points and respective dwell times must therefore be taken into account.
-
Taking into account the application profile, vertically wound profile copper can offer a good compromise between efficiency and cost - if the contacting problem is solved.

The effects of Litz-wire insulation and fill factor are not taken into account here.
The journey is the reward
Overview of the model’s performance:
-
The simulation model was extensively validated and compared with existing models and measured data.
-
AC losses were measured for different materials across large duty cycle and frequency ranges, and compared with theoretical models.
-
Our goal: Increased efficiency in determining losses and selecting suitable components, as well as the optimization of all interfaces within the eDrive system.
-
Careful selection of the winding as a tradeoff between efficiency and cost – in order to achieve good TCO.
-
Particularly in the case of high-frequency motors, one should always take into account the application profile and make sure that the design decisions for the windings are arrived at only after careful consideration.