SPEAKER MENG-JU HSIEH **COMPANY** CHALMERS UNIVERSITY OF TECHNOLOGY

TOPIC

E-MACHINE DESIGN FOR ENHANCED RECYCLABILITY AND MINIMISED ENVIRONMENTAL IMPACT

CHALMERS E-machine design for enhanced recyclability and minimised environmental impact

Swedish Energy Agency

ABB

CEVT

PhD student: Meng-Ju Hsieh Supervisors:

Torbjörn Thiringer, Emma Grunditz, Sonja Lundmark, Anders Nordelöf

Outline

- Introduction to LCA
- Previous E-machine LCA work
- PhD project

Introduction to Life Cycle Assessment (LCA)

Why LCA?

Index		
Economic	29,90 kr/kg	28,90 kr/kg
Nutritional	520 kcal/kg	880 kcal/kg
Environmental	?	?

LCA framework

Goal and scope definition

- The goal
 - Why reason, intended application
 - Who intended audience
 - What product/system
 - Purpose specified question
- The scope
 - Functional unit
 - · Impacts and how to describe them
 - System boundaries and initial flow chart
 - Data quality requirements

- Functional unit, eg: kg-apple, kcalbanana
- Impacts, eg: resource use, human health
- System boundaries and initial flow chart
- Data quality requirements

Inventory Analysis (LCI)

- Construction of flow model
 - boxes and arrows
- Data collection
 - raw materials (incl. energy)
 - Emissions and waste

Inventory Analysis (LCI)

Resources-	Inventory results	Emissions and waste
Resources-		Emissions and waste

- Calculation
 - product flows (systems equations)
 - elementary flows, scaled to the functional unit, eg: kg water/kg-apple, g CH4/kcal-banana...

Life cycle impact assessment (LCIA)

- Key impact categories:
 - Global warming
 - Water use
 - Toxicity for chemicals
 - Energy use for fuels

Index		
Economic	29,90 kr/kg	28,90 kr/kg
Nutritional	520 kcal/kg	880 kcal/kg
Environmental*	0.185 kg CO2-eq/kg 0.356 g CO2-eq/kcal (Sweden)	0.294 kg CO2-eq/kg 0.334 g CO2-eq/kcal (Sweden)

*Karlsson, A. E., Climate Impact from Fresh Fruit Production, 2017.

Uses of LCA

- Decision making
 - Product/process development
 - Purchase & supply chain management
 - Environmental policy making
- Learning
 - Identification of improvement possibilities
 - Formulation of rules-of-thumb
 - Risk management

- Communication
 - eco-labelling
 - environmental product declarations
 - footprints
 - reporting
 - green product portfolios

Previous E-machine LCA Work

Goal

Scope of previous work

Boundary conditions of E-machine

Results

Conclusions

- Impacts on climate change and human toxicity most important
- PMaSynRM causes lowest CO2 emissions interesting for further investigations
- Mining and production of copper is a major contributor of toxic emissions
- Magnets contribute to the burden, but mostly indirect
- Recommended motor design targets
 - high energy efficiency
 - slender housings
 - compact end-windings
 - segmented laminates

PhD Project (Follow-up LCA work)

Goal			
PMSI		Л	SynRM
	Rotor Configuration	Magnet	
	PMSM	Nd (Dy) FeB	Benchmarking
	IM	-	-
	SynRM	-	

Scope

IM efficiency map calculation

Efficiency

Step 3 Determine energy losses

• Electrical parameter identification

System Boundary

Ecoinvent representation for input and output flows

IM Motor Factory - Al-rotor

High pressure die casting (HPDC)

- Similar process as for Al-housing
- Re-use LCA model
- Melting process:
 - Conventional: natural gas
 - Potential update: electricity

AI HPDC Energy to melt aluminum

Just melting Al. from 20°C to 660°C require $\approx 1 \text{ MJ/kg}$

Thank you

ReCiPe impact categories

LCIA equation:

$$\text{IS}_j = \sum_i Q_i \times CF_{i,j}$$

- IS_j: impact score for impact category j
- Q_i : quantity of elementary flow *i* (emission or resource use, inventory results)
- $CF_{i,j}$: characterisation factor for elementary flow *i* to impact category *j*

IMPACT World+

Reference E-machine – PMSM

E-motor	Car
Max power	100 kW
Max torque	239 Nm
Max rot. Speed	12 000 rpm
Max dc-voltage	430 V
Max rms ph. Current	260 A
Max rms current density	20 A/mm ²
Stator outer diameter	200 mm
Stator length	127 mm

